- · 《自动化应用》栏目设置[06/28]
- · 《自动化应用》收稿方向[06/28]
- · 《自动化应用》投稿方式[06/28]
- · 《自动化应用》征稿要求[06/28]
- · 《自动化应用》刊物宗旨[06/28]
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。
金属学及金属工艺论文_基于PSO-LSTM模型的刀具
作者:网站采编关键词:
摘要:文章摘要:为确保车削加工的表面质量和加工稳定性,实现对车刀磨损状态的实时准确监控。提出了基于小波阈值去噪、长短时记忆网络和粒子群算法的刀具磨损状态预测模型。采用改进
文章摘要:为确保车削加工的表面质量和加工稳定性,实现对车刀磨损状态的实时准确监控。提出了基于小波阈值去噪、长短时记忆网络和粒子群算法的刀具磨损状态预测模型。采用改进多项式阈值函数对刀具加速度振动信号进行去噪,构建了优质的信号输入样本。训练长短时记忆网络对刀具后刀面磨损值进行预测和磨损状态分类。利用粒子群算法对网络进行参数寻优,提出的PSO-LSTM模型在预测和分类精度方面优于未优化的LSTM网络。
文章关键词:
论文DOI:10.13229/j.cnki.jdxbgxb20210778
论文分类号:TG71;TH117.1
文章来源:《自动化应用》 网址: http://www.zdhyyzz.cn/qikandaodu/2021/1116/1994.html